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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE NO. 1063

COMPARISON OF MEASURED AND CALCULATED
STRESSES IN RUILT-UP BEAMS

By L. Ross Levin and David H. Nelson
SUMMARY .

Web stresses and flange stresses wers measured
In three built-up beams: one of constant-depth
with flanges of constant cross section, one linearly
tapered in depth with flanges of constant cross section,
and one linearly tapered in depth with tapered flanges.
The measured stresses were compared with the calculated
stresses obtained by the methods outlined 1n order to
determine the degree of accuracy that may be expected
from the stress-anslysis formulas. These comparisons
indicated that the average measured stresses for all
points in the central section of the beams did not exceed
the average calculated stresses by more than 5 percent.
It was also indicated that the difference between average
measured flange stresses and average calculated flange
stresses based on the net area and a fully effective web
did not exceed 6.1 percent.

INTRODUCTION

In an effort to improve the accuracy and consistency
of strength predictions of aircraft structures, an .
increasing tendency has besen evident in structural
engineering to supplement static tests with strain
readings. The advent. of the electrical strain gage has
accelerated this tendency. Because the alrcraft struc-
ture is quite complicated and the location of the
failure in a well-designed structure cannot be easily
determined, even a relatively large number of gages
(several hundred) may be just sufficient to place a few
gages on each spot where failure is likely to occur.
The situation is further complicated because structures



2 NACA TK No. 1063

bullt up from sheet are not so uniform nor so consistent e
in thelr bshavior gs, for exemple, beams of solid cross
sectlon. The simple formulas for beams of solld cross
gection consequently ere not applicable to bullt-up
structures. The succesgsful interpretation of strain
readlngs on alrplane structures requires, therefore,
basic information on the consistency of the behavier of
built-up structures. This informstion may be obtalned
by multigage tests of structural elements simple enough
to permit very complete coversge. The test data thus
obtained way be compared with the results obtained by
stress-analysis formulas, such as those presented in
references 1, 2, and %, to determine the accuracy with
which these formulas may predict the stress of bullt-
up structures.

The present paper glves basic data on the stresses
obtained for built-up beams and these measured siresses
are compered with those predicted by stress-anslysis
formulas. This information was obtained from straln
measurements on three thin-web beams: one of constant-
depth with flanges of constant cross sectlon, one
linearly tapered in depth with flesnges of constant - —
cross section, and_one linsarly tapered in depth-with
flanses of which the cross sectlon varied at the same
rate as the deoth of thé beamw.

SYMBOLS : '
Ap cross-sectional area of flange (two angles) normal
to center line of besm, square inches
Ap effective cross-sectlionsal area of flesnges normal
8 to center line of beam (flange area plus one

sixth of web &rea), sgquare inches
B Young's modulus of elasticity, ksl —

I3 vertical component of flange force in beam tapered
in depth, kips _ '

it shear modulus, ksi
moment of 1lnertis, inchesu

Inp moment of inertia of total effective Eross section
of beam about—neutral axis, inches=
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moment of inertia of effectlve cross section of
flanges about neutral axis of beam,inchesu

total length of beam, Inches

bending moment, kip-inches

ratio of area of two flanges to area of web (ZAF/ht)
load on tlp of beam, kips

momént, about neutral axis, of ares between extreme
fiter and fiber a distance y Irom neutral axis,

inches3

external shear force, kips

effective depth of beam between centroids of flanges,

inches

thickness of shear web, inches

‘distance from tip of beam, inches

distance of given fiber from neutral sxis of beam,
inches . o

taper asngle, angle between center line of beam and
line defined by centroid of flange '

tensile or compresslive strain
normal stress 'in’ flange at the angle a, ksi

average normal stress in flange at angle a,
xsi

shear stress in web at distance 7y, ksl

average shear stress in web at any station, ksi
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DISCUSSION OF THEORIES FO? BUILT-UP BEAMS
*eb Stresses
The shear stresses in the web of a beam of constant

~depth at any distance y from the neutral axls are
usuelly calculated by the standard formula

o
O

|

(1)

-1
ct

The average shear stresses in the web are usually
calculated by

T, = - S (2)

Formulas (1) and (2) are not applicable to besms
tapered 1in depth because the flanges carry some shear
force that should not be neglected. In reference 1
a method of cowmputing shear stresses in beams tapered in
depth is outlined. The method 1s besed on the squilil-
brium equation

h+dh 'h
2 : 2
M + 4d™ M
t dx = Mt add sy | M ]
Tyt dx T T ol vt -dy T vt dy {(3)
¥ ¥

This method is merely an extension of the "engineering!
method used in deriving formula (1).

The formula for shear stress at a distance y from
the neutral axis of a beam linesrly tapered in depth
wlth flanges of constant cross sectlon can be obtalined
by integrating equation (3) as
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AF+—6— . <‘A]_+—

where 8 &and M are positive in the directions indlzated

on figure 1.

The formula for average shear stress in the web at
any station, derived by integrating formulae. (L) from zero
to h/2 and dividing by h/2, is

S _2¥ tan a __AF
av ht

; (5)
h2 _ ht .
t A}:t + z—

This formula is frequently used to calculate shear
stresses but is usually derived in a different way.

The total shear force in the web at sny section 1s
usuelly assumed to be the total external shear at that
section minus the vertical components of the flange
forces st the same section, and the web is assumed
capable of resisting bending. The vertical forcs in
each flange 1s then

7 _ M t;n a *F . ()
Ip

where IF/IT 1s the ratio of the moment of inertia of

both flanges about the neutral axis of the beam to the .
total wmoment of inertia of the same =sectlon of the beam

about the neutral axis. If the. moment of inertia of the
flanges about their own centriid is negl@ctnd the
F

ratio Ip/Ip reduces to end formula (6) becomes

g
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- M tan a AF

h ht
Y

F (6a)

Thls equation is the form in which the expression for the
vertical component of the flange force occurs in )
formula (5},

A formula for the shear stress at a distance ¥y
from the neutral axls of a beam linearly tapered .1ln
depth with flanges of which the cross section varied at
the same rate as the deoth may also be derived from

equetion (3). The shear stress in this type of beam is
1 2 1 2
S[N + 5 - 2@9:' 2M ten a_‘[N * 5 - 6(%) ]
= ——— - - (7)
1 2 1
ht(N+-5-> ht<N+_5.)

where N is the ratio of the cross-sectional area of
both flanges, normal_to the neutral exls of the beam,
to the cross-sectional ares of the web at the same
section. The formula for the average shear stress Tgy
1s the same for all types pof besams.

In reference 2 wethods of calculating shear stresses
are presented that are bssed on the sare equilibrium
equation as the methods in reference 1. The pvrecedures,
however, are slightly different and in a particular cass
one wethod may have some advantages over the other. The
final result will be the same with elther method.

The  "engineering" methods of references 1 and 2 are
aoplicable only to beams wlth small taper angles because
they do not consider compatibllity eof displacements
although they do ensure squlilibriwn. These wethods
also assume that the bendling stress is proportlonsl to
the.dlstance from the neutral axis of the beam and thls
assumptlion 1s not satisfactory for lerge taper angles.
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4 "classical method of computing stresses in beams
tapered 1n depth is presented in reference 3. The
engineering methods and this classical method agree for
small taper angles, and the classicsal method is applicable
to large as well as to small taper angles. In vreference 3
are presented solutions for linearly tapered beams with a
rectangular cross section, for a thin web with concen-
trated flanges of constant cross section, and for a thin
web with concentrated flahges with the cross section
varied st the same rate as the depth of the beam. These
solutions, however, are usually much more difficult than
the englneering solutions to the problem. The solution
for a thin web with concentrated flanges of constant
cross gection is very laborious for swall tapsr angles.

~ Flange Stresses
The axlal stresses in the flanges of a bullt-up

beam of constant depth are usually calculated by the
standard formula R

_ My
= = (8)

The average axial stresses in the flanges (the stresses
at the flange centroid) are usually calculated by

(e} = M . . _ . (9)
av hig _

The effective flange area AF can have & maximum value

equal to the gross area of the flange plus one-sixth of
the web area. : In sowe cases 1t may be necessary to use
a smaller effective area to take into account the rivet
holes in the flange and the possible lneffecilveness of

the web in bending. el fi:;f===

Forrulas (8) and (9) are also used to calculate the
stresses in the flanges of tapered beams; however, the
stresses obtained from these formulas will not be axial
stresses in the flanges. 1In order to obtain axial
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atresses, the stresses csalculuted by formulas (8) and (9)

should be multiplied by —E—. The formula for axial
cos—a

stresses at any distance y from the neutral axis 1s

then

2

i 1
o =¥ | (10)
I coas " 4a

and the formula for axial stress. at the centroid of the
flange is

(11)

w1
Cgv

hAF éos2
e

a

where the area of the flange Ap 1s weasured normel to
the center line of the. beam.

TESTS

. Specimens

Three stiffened bullt-up cantilever beams of 24,8-T7

aluminum alloy were built and tested. One was & constant=

depth beam with flanges of constant cross section, one

a beam linesrly tapered in depth with flanges of constant
cross section, and one a beam linesrly tapered in depth
with flenges having a cross section that varied at the
same rate as the depth of the beaem. The webs were
stiffened with angles placed back~to-back on opposite
sides of -the web. For simplicity of construction the web
was fastened to-the outside of the legs of the flange
angles rather than to the insids. Further details of the
construction and the actual dimenslons of the beams are
shown on figure 2. -

Procedure

The root of. each beam was bolted into a steel
fixture and the-comoression flarige was supported against
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lateral motion at the tip and at the midpoint of the span
as shown in figure 3. A tilp load was applied on the
lower side of the beam by a hydraulic jack resting on a
platform scale, which was accurate to 0.5 percent.
Strains were measured in most of the even numbered bays
on the longitudinal center line of the beam, and also at
distances equal to one-quarter and three-elghths of the
effective depth on each side of the center line except
on the tapered bear with flanges of constant cross
section where measurements were taken only at the center
line and at a distance equael to one=-quarter of the
effective depth on each side of the center line. At
each point, 2-inch Tuckerman optical strain gages were
mounted in pairs on each side of the web at angles

of L}5° and 135° with the longltudinal center line of

the beam. Figure 3 shows & few gages mounted at ASO

on the tapered beam with tapered flanges. -

Axial strains in the flanges were measured with
2-inch Tuckerman optical strain gages mounted on the legs
of the angles sattached to the web and on the outstanding
legs of the angles. Stralns were not measured on both
sides of the attached legs of the flange angles because
the web covered one side.

The load was applied to each beam in three equal
increments. ~If a stralght line through the points on the
load~straln plot for each gage did not pass through zero,
the curve was shifted to pass through_zeroiéhowever, if
this shift in strain wes more than 20 X 10 ¥, the
measurements at thls point were repeated. Any measure-
ments that did not satisfy these conditions after being
reveated and thoroughly checked were not used.

Strains measured by pairs of gages on opposlte B
sides of the sheet were averaged and the average strains
for L5° and .135° were used to compute the shear stresses
at 0° and 90° by

T = (% [E(LI_SO) - €(1550)] (12)

Tn g1l calculations E was assumed to be 10.6 X 102 ksi
and G was assumed to be L.O x 107 ksi.
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PESULTS AND DISCUSSION

¥Yeb Stresses

The shear stress distribution over the depthh of the
three beams is shown in figures L, 5, and é for a tip
load of ¢ kins on the constant-denth beam and & kips on
each of the tapered beams.  The sheer stresses at—thesse
loads were slightly less than the calculsted buckling
stresses. The differences betwéen measured and calculated
shear stresses are shown as percent of -the calculated
shesy stresses In figure 7 and a sumwary of these dif-
ferences for the central section of the beams is 5iven
in table I.. The calculated shear stresses and
shown on these figures were calculeted by formulas l?
and (2) for the constant-depth beam, by formulas (h
and (5) for the tapered beam with constant-flange area,
and by formulas (5) and (7) for the tepered beam with
tanered flanges. - : )

central sectlon.- From a brief study of figures L,
5, and 6 it 1s aoparent that at distsnces greater than
one-half the roct depth from either end of the beams
(bays 5 to 16) the measured shear stresses in the web
were slightly greater on the compression side of each
beam than on the tenslon side on the constant-denth
beam the indlvidual measured shear stressgses on the tenslon
side of the beam were freguently less then the calculated
stresses, but the measured stresses on the compression
side were usually greater than the calculated stresses.
nn- the other beams the individual measured stresses were
almost always grester than the calculated shear siresses.

Table I shows that the average measured stress for
all pointd ‘in the central section of any of the three
beams did not exceed the average of the calculated
values of Tgy Dby more than 5.5 percent and did not

exceed the average of the calculated values of T Dby
more than l'.7 percent. The individual measursd stresses
varied from:5.6b.percent less than 7T to 23.3 percent
more than T. In the central sectlion of all three beams,
however, there were only two points where the measured
stresses exceeded T by more than 15 percent. These
points were in bay 16, sabout one-hglf the root depth
awey from the root of the beam.
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Further study of figure 7 shows that the maximum
dilferenbes between the calculated T and the calcu-
lated at any point on the constaent-deoth beam were

por601&%Ye (about 7 percent) but on the tapered beam
the maximur differences betwesern the calculated values

of T and T, were smeller (about 1.5 percent). Wear
the root, where the proportions of the beams were very
nsarly the serme, the calculated shear-stress variation
over tihe Cepthk of the tapered beams was much less than
that over the depth of the constant-depth beam. It
would be possible, however, to have tapered beams of
which the »rovortions were such that the differences
betveen the calculated values of T and T,, would

be much grester than in the present besms.-

Foot section.~ It is obvious from a study of fig-

ures L, 5, and 6 that for bay 18 in all beams tssted,
stresses calculated by the proper eguations for
or Tgy on the basis of the assumption that the flange

force -acted slong the centroid were not satisfactory.

The outstanding legs of the flanpes were cut off
approximately 2 inches nearer the root than the center
line of bay 18 and a steel plate was attached to one
slde of the flange angles from bay 17 to the root to
reinforce thls section. The bolts that attached the -
flanges to the root fixture were between the center
line:of the flaznge and the original locatlion of the
flange centroid. It was =ssumed, therefore, that the
flange. foree acted alonig a2 line extendlng from ths
interseoction of the original flange centroid with the
center line of bay-1lE& to the center of the root attach-
ment bolts. This:assumption gave & taper angle of L°
instead of 7°12' and 7°L1' on the tepered beams and of

-4P instead of O on the ccnstant-depth beam, In bay 10
the calculated shear stresses based on this assum“tion_
were more setlsfactory than the calculated shear stressss
based on the .assumption thet the flaznge force acted along
the orizinal centroid of the flange (figs. L, 5, 6, and 7).
The mayimum measured stress in bey 18 of the tapered

beams is about 1 to 2 percent greater than the shear
stresses calculated on the basis of a change in the taper
angle st that section, but the messured shesar stresses -
in bay 18 of the constant-depth beam fall about half way _
between the two calculated curves. . . - et
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Tip section.- If a colurn has a load applied only
at one end and a shear web attached to it along one side,
the maximum disoclacement occurs at the loaded end. The
shear strain and shear stress in the web sttached to it,
therefore, are highest at the loaded snd of the column,
This condltion is the one that occurred at the end uprights
of the beams tested for the present 1nvestigation. Flg-
ures h s and 6 show that the shear stresses in bey 2

were highegp at the loaded end pf the upright. The meximum

measured stress was never wmore than 1 percent greaten
than the maximum calculated stress. The.distri»sution of
shear stresses in the web near the loaded-snd upright is
probably one of the important factors affecting the
strength of the lozsded-end upright.

Flange Stresses

The distribution of megssured end calculated axial
flange stresses for the three beams tested are shown on
figures 8, 9, and 10. Stresses were calculated by
formulas (8) and (G) for the constant~depth beam and by
formulas (1C) and (11) for the tapered beams. These
stresses were calculated for & fully effective webh for
beth the net area and the gross area. In order to obtain
an average vaelue of measursed stress at eazh sectlon, a
straight line-was drawn through the test points and the
stress at the intersectlon of this 1line with the centroild
of the flange was' taken as the average messured atress
in the flenpe. Table I gives the average difference
between the measured and calculated stresses at the
centroid and the range of variation between measured and
calculated stresses in the extireme fiber for all noints
in tha central section of each pesam.

Central section.- At a Tew sections in the constant-

depthh beam the measured axial flange stresses were nearly
constant over the depth of the flange, but at other
sections of this beam and in the tapered beams the
stresses were not constant over the deprth of ths flanze.
Flgure 10 shows that the medsured stresses in the tapered
beam wlth tavered flanges averaged less than the calcu-
lated stresses for the net area and a fully effective
web, but the gverage weasured stresses in the other

beams (figs. 8 and 9) appear to have been slightly greater
than the calculated stresses lor .the net—area and a fully
effective web., The average difference between measured
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“lenge stresses and calculated flanze stresses did not
exceed 6.1 percent when the calculstions were based on
the net arees end a fully effective web (table I). The
measured stresses in the extreme fiter varisd from

8.3 nmercent less then the calculated éxtreme fiber
stresses to 8.8 sercent mors than the calculared extreme
7iter stresses.

Pgures 8, 9, and 10 show also the average calcu-
lsted stresses based on the gross area and a fully
effective web. Tor all sect:ons on the constant-depth
beem and the tapered beaw with flarges of constant
2rcoss section, the calculated stresses ‘tased on the
gross area were about % percent less than those based
o1 the net area. In the tapered beam with tapered
flenzes the stresses bassed oan the gross area wers
from 5 to 9 percent less than those based on the net .
area. On the compression Tlange nf the constant-depth
beam, calculated stresses based on the assumption that
the web was effe~tive only on the tension side of the
bean would have been sbout 10 percent grestser than the
calculated stresses based on the assumnt;on that the web
wag fully effective; on the tension flange the differeénce
would have been only 1 percent.

Root end tin ssctions.- The messured flange stresses
in bays 2 end ! of the tepsred beams varied from less
than one-kalf the celculested flange stresses to more
then two tires the calsulated flange stresses (figs. 9
and 10), The measured stress at one point in bay 5 of
the constant-depnth beam was about 25 pegrcent grenter
then the.calculsted stress. These lsarge variations,
howsever, sre of little ovractical importance becausse
the stresses at these sections were swall as compéred
with those at other points in the besm. 'In bay 12 of
both tapered beams the varlation of measured stresses
across the depth of the flenge was much greater then
in the central section of the beam. - The measured L
extreme-fiber stresses were from 15 to 30 percent
greater than the calculated stresses., It 1s very
difficult to calcalate flanre stresses near the root
of any beam because these stresses depend to a large
extent upon the details of the connections.
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CONCLUSIONS

Three thin-wsb built-up beams, one of constant devpth
wlth flanges of constant cross sectlon, one with slight
linear teper in denth with flenges of constant cross

section, and one wlth slight linear taper in depth with _

flanges of which the cross section varied at the same
rate as the devth of the bsam wers tested at such loeds
that the web shear stresses were slightly less than the

calculated buckling stresses. Comparlsons of measured  _

shear atresses with calculated shear stresses indicated
that the average measured shear stresses for all points
in the central section of ths beam dl1d not exceed the
average calculated shear stresses by mors than about

5 percent. The individual measured shear stresses varied
from about 6 percent less than the calculated shear
stresses to about 23 percent wmore than the calculated
shear stresses, but thers wsre cnly two points in all
three bezms where the mezsured stresses exceeded the
calculated stresses by more than 15 percent. These
points were at a station about one-helf the root denth
sway from the root of the tean.

Comparlison of measured flange stresses with calcu-
lated flange stresses based on the net areas and & fully
effective web showed that the difference between average
me asured stress and aversge ca&lculated stress in the
central section of any of ths beams Aid nnt exceed
6.1 percent. The i1ndividual measured stresses in the
extreme fiber varied from about & percent less than
calculated t~ about 9 cercent more than calculated.

Langley Memorial Aeronautical Laboreatory
Natlonal Advisory Committee for deronautics
Langley %ield, Va,, Januery 21, 1946
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r% steel reinforcc;m?

BoH line/_* (Two 2*2*}; anqles

2498 1246 m

Centroidy J_H - -é-xé—xrg angles
of flange = _1» 20 bays each 24 on both sides
Flange attachment 4999 T

bolts

(b) Tapered beam with f!anqes of constant cross secﬂon
Web thickness 00392

r& Steel reinfor‘cemenf§

NTwo ZXZ*}[ angles Tapered
Bolt line at same rate as totdl

ﬁrh of beam

4
245388 ! 2| HGO m

—

4 M

Centroid i = \éxé‘ B angles
of flange .20 bays each 24 | on both sides
Flange attachment 4999 g

bolts

) Taper*ed beam with tapered flange. Web thickness,00379 .

Figure 2.- Concluded . NATIONAL ADVISORY
COMMITTEE FOR AERONAUTICS
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oc=0" for bays 210 16 oc=0" _ -4

0

——— Cdlculated curve o}
10— for T (equation 1)
—— — Calculated curve 6 . 10
o for T, (equation 2) .
Ob—— © Stress computed | o
from measured |
strains
- -0 °

Distance from ¢ of beam, in.
o)

-0 o ®

Tenson flange
| ] i | | L | | |
Baysi2told O 2 4 6 8 10 12
Bays 21t0l0 O 2 4 6 é 10
Shear stress, Ksi NATIONAL ADVISORY

COMMITTEE FOR AERONAUTICS

Figure 4 .- Measured and cdiculated shedr"—sfr*ess
distribution in the constant-depth beam.
P=8 Kips.
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Fig. 5
Bay 18 : i
oc=712 & oc=7"12" for bays 2 to 16
10— ' '
©
—tt
P Cadlculated curve forT
-0 ] (equation 4
16 —— —Calculated curve for T,
I0— 8 (equation 5)
b
0 0 o ®© Stress computed from
o j[: measured strains
£ -0 .
= | T
g 10 6
g 1. x{;
<l e |
£ o]
£ -0 1
3 o 12 )
g ~ 4 _.—Compression flange
g © 1%
0 © {,0
10— __AP_ Tension flange
10 9
© o Y
0 © © )
% NATIORAL ADVISORY
© COMMITTEE FOR AERONAUTICS
| | A, | | |

2

Shear stress,ksi
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